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Abstract

I"here is a growing interest inthe virtual reality (VR) calibration technique of matching graphi-
cally simulated virtual environments in 3-1) geometry and perspective withactual video camera views.
Jet I'repulsion laboratory (JPI.) recently developed such a technique that enables high-fidelity pre-
view/predictive displays with reliable, accurate calibrated graphics overlay on live video for telerobotic
applications, and demonstrated its effectiveness in a recent JPL/NASA-GSFC (Goddard Space Flight
Center) remote servicing task. Within NASA’s recent thrust for industrial collaboration, J P1. recently
established a technology cooperation agreement (1T'CA) with Deneb Robotics, Inc. In this J PL-Industry
cooperative Deneb Commercialization Task, JPL transfers tile VR calibration software technology to
Deneb, and Deneb inserts this software technology into its commercial product. This joint technol-
ogy collaborative work will enable Denebto commercialize an upgraded industry product that will
greatly benefit both space and terrestrial telerobotic applications. On-going new developments of
semi-automatic VR calibration techniques using multi-resolution correlation-based area matching and
edge-based feature matching arc also presented as evolving technical additions to enhance the existing

operator-interactive VR, calibration technology significantly.
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I. Introduction

Graphic simulation has been widely used in telerobotic applications during the off-line task analysis
and planning and aso during the introductory operator training. However, the use of graphic simula-
. tion during the on-line telerobotic operation, for example, as a tool for on-line preview and predictive
visualization, has been limited due to the lack of accurate matching between the simulated environment
and the actual remote site task environment, J PL recently developed a virtual redlity (VR) calibra-
tion technique [16]-[17] that enables reliable and accurate matching by operator-interactive camera
calibration and object localization procedures with new linear/nonlinear lcast-squares agorithms for
multiple-camera views. This VR calibration capability enables accurate visual planning, preview, and
prediction of robot motion by overlaying virtual graphical images on real images, providing powerful
new graphics-based tools for real-time simulation and control of robots in both terrestrial and space
applications. A recent JPL/NASA-GSFCORU (Orbital Replacement Unit) changeout remote servicing
task performed in May, 1993 demonstrated the usefulness of the developed VR calibration technique
and its application to preview/predictive displays with calibrated graphics overlay on live video.

This paper describes our on-going J PL/Deneb joint technology collaborative work that is enabling
Deneb to commercialize an upgraded industrial product with a VR calibration video overlay option.
The first release of the option, which will be available by the end of February1995, will be limited to
“manual operator-interactive” VR calibration for fixed cameras. The second release, which is planned to
be available by September 1995, will include “semi-automatic” VR calibration capability for both fixed
and moving cameras as an cvolving technical addition to the first year's “manual operator-interactive”
VR calibration option. Section 2 briefly summarizes the previously demonstrated J1’L VR calibration
technique, and Section 3 describes the actual on-going implementation of the VR calibration technique
on a Deneb’s commercial product TEL EGRIP. Section 4 presents our current new developments of semi-
automat ic VR calibration techniques by using correlation-based area mat thing and edge-based feat ure
matching. Section 5 illustrates future planned work and potential space and terrestrial applications.

The conclusion appears in Section 6.



II. Virtual Reality Calibration

The existing VR calibration technique that was used in tile JPL/NASA-GSFC telerobotic demon-
stration enables reliable, accurate matclhing through operator-interactive camera calibration and object

localization procedures. These are briefly described here.

2.1 Camera Calibration Using a Robot Arm

Our camera calibration method which is designed for calibrated graphics overlay has three key new
features; 1) A robot armitself is used as the calibration fixture, eliminating cumbersome procedures of
using an external calibration fixture. 2) An operatlor-interactive data entry is adopted to obtain reliable
correspondence data, since it is still difficult for a computer vision system to find correspondence points
reliably. 3) A nonlinear least-squares algorithm combined with a linear least-squares one is employed to
obtain accurate camera parameters, where the linear least-squares solution is used as an initia guess.
Once the camera parameters are obtained relative to the robot arm base frame through this camera
calibration procedure, the graphics model of the robot arm can be overlaid on the video camera view.
Details of the operator-interactive linear/nonlincar camera calibration algorithms and their software
listings can be found in the recent JP1. report [15], which was prepared as part of the JPL-Industry

cooperative Deneb Commerciaization Task.

2.2 Object Localization

In the original predictive display, only the robot arm graphic model was overlaid on live video asa
predictor of the time-delayed robot motion. In our new approach, the object localization procedure has
been added after the camera, calibration to determine the object pose (position and orientation) and
enable graphic overlay of both the robot arm and the object (s) on live video. Since the object pose
becomes known through object localization, our new approach enables the semi-automatic computer-
generated trajectory mode in addition to the teleoperation mode. Our object localization method has
three key new features, 1 ) An operator-interactive method is adopted to obtain reliable correspondence

data, 2) A projection-based linear least-squares algorithm is extended to haundle multiple camera views.



3) A nonlinear least-squares agorithm combined with the extended linear one is employed to obtain
an accurate object pose from multiple camera views. Details of these projection-based linear/nonlinear
least-squares algorithms and their software listings can be found in [1 5].

The above VR calibration techniques were applied to the JP'L./NASA-GSI'C remote servicing demon-
stration. An example of a calibrated video overlay after the VR calibration is shown in Fig. 1, where
both the robot arm ancl the object graphic models arc superimposed on the video image. Experimental
measurements of calibration errors in inserting a tool into the ORU hole indicated that the positioning
alignment accuracy achieved by the developed calibration technique using four camera views was 5.1
mm on the average with a 10.7 mm maximum error at 95% confideuce level. T'he depth error was 6.5

mm on the average, with a 13.7 mm maximum depth error at95% confidence level.

2.3 Preview/Predictive Displays

After matching 3-1) graphic models of a virtual environment with actual camera views through the
above VR cdlibration technique, the operator can now perfor m a telerobotics servicing task by using
preview/predictive displays with calibrated graphics overlay on live video. I'review/predictive displays

allow the operator to generate the simulated robot arm trajectory in preview and then to visually
‘ monitor and verify the actual remote robot arm motion with confidence, thus enhancing safety and re-
liability in remote servicing operations regardless of communication time delay. Our preview/predictive
display is useful not only for non- contact tasks but also for contact or insertion tasks involving compli-
ante/impedance control in the remote site. This is because the simulated graphics arm is updated with
the actual final robot joint angle valuesafter the completion of each robot arm traectory command
at the remotesite. This update eliminates accumulation of small motion execution errors as well as
large compensation errors due to the compliance/impedance control. Yig. 2 shows an example of a

preview/predictive display during the performance of the JP’1./ NA SA- GSFC demonstration task.



I11. Irnplementation on TELEGRIP

3.1 Open Architecture

The TELEGRIP Access framework [3] is an open architecture based upon Dynamic Shared Objects
(11 SO's) as shown in Fig. 3. 1)SO's provide many benefits when compared with other strategies for
incorporating user-defined modules with a centralized kernel including speed of development, access
to al internal functions and data including the entire geometric database, flexibility in development,
and minimizing platform dependence. The use of DSO’sinc1 eases speed of development because the
developer does not have to link a fixed library every time a change is desired. The mapping of user
libraries to application libraries occurs at run time. This enables the developer to compile and load
only the code that has changed. The use of DSO libraries gives the Access developer the same level
of system functionality that original developers have. Internal functions and data are accessed directly
with no degradation in performance.

A key feature provided by the TE].IEGRIP open architecture is that it allows developers/users to

add their own virtual reality calibration algorithms and video overlay methods, if necessary.

3.2 Camera Viewing Model

The TELIEGRIP viewing model [4] for perspective project ion is defined by a pyramid which is in-
scribed within the viewing cone (Fig. 4). Only the geometry inside the pyramid truncated by hither and
yonder planes (viewing frustum) is visible. The user can specify the perspective projection parameters
such as image plane size (II'S), focal length (11'],), and field of view angle (1’OVY), which are related by
I'OVY = 2 * atan(1PS/(2*F1)).

3.3 Muti-Window Video Overlay

The TELEGRIP Access AP1 (application programmers interface) provides a rich suite of functional-
ity which canbe used to replace and enhance internal functions, access and extend the internal database,
and rapidly develop toolkit applications, all with the guarantee of portability between TELEGRIP re-

leases. Video overlay leverages upon Access to create and manipulate multiple graphics windows, en-



hance rendering functions to effect video/graphics blend, and extend the internal database to maintain
video calibration data within the TEL E GRIP camera viewing data strut.turcs.

The video overlay procedure starts with the definition phase in which a standard “User View”,
TELEGRIP’s representation of a virtual camera, is created.T'his can be accomplished either program-

maticall y through Access function calls, or through the traditional TELEG R]} button interface. The

. user then defines a live video or a captured ‘video image source for the view which is stored within the

view data structure as an Access database extension. The view may then be displayed in an externa
window, either in graphics, video, or blended graphics/video display mode. Blending is accomplished
via a Video Overlay function registered as an Access pre-display callback system which draws the video
into the frame buffer just before graphics scene is rendered. When the operator wishes to proceed
with the calibration phase of video overlay, the view window to be calibrated is automatically placed
into video display mode. The operator then chooses 3D graphics points from any window currently
in graphics display mode and correlates them with 21) video points from the calibration view window.
This data is stored with the video Setup in view structure Access database extension. Upon completion
of data point acquisition, the view is calibrated and placed into blended ,g]a)hicsvideo display mode
from which the operator may inspect the calibration results.

The TELEGRIP video overlay implementation is based upon an application programmers interface
(API) layer which insulates the overlay developer from the specifics of video hardware, thus enabling
support over a wide range of video products. Support is currently planned for the SGI Videol.ab,
Galileo, Indigo2, Ind y, and Scrius Videoboards encompassing t he entire range of current SGI computing

hardware from theIndy to the Onyx.

IV. Semi-Automatic Virtual Reality Calibration

Semi-automatic and automatic techniques of matching graphic model images (virtual environments) -

to actual video images by using model-based image processing can significantly enhance the current
“opcrator-interactive” VR calibration technique for telerobotic applications. T'wo primary image match-

ing methods are 1 ) area matching that uses correlations between image regions, and 2) feature matching



- that mat ches features such as edges and corner poinits between images. 1 n general, area-based and
feature-based matching arc considered to be complementary rather than competing with each other.
Both area and feature matching methods have been implemented recently to compare and take advan-
tage of both methods. Preliminary results are included in this paper, but further tests and improvements

are necessary.

4.1 Correlation-Based Area Matching

The correlation-based arca matching algorithm that we implemented einploys three key techniques:
1 ) multi-resolution hierarchical coarse-to-fine strategy, 2) edge-based block matching, and 3) princi-
pal axes procedure using eigen vectors of each correlation matrix. The multi-resolution coarse-to-fine
strategy [1], [8], [20] provides two advantages; 1) coarse global matching using lower resolution images
with a larger size of the scarch area guides fine local matching using higher resolution images with
a smaller size of the search area, reducing thenumber of false matches, and 2) the correlation-based
matching speed increases markedly. Block matching [21] has been extensively used in today’'s video
compression standards such as MPEG. In block matching, a reference image is segmented into small
rectangular blocks, and for each block one displacement vect or is calculated that represents the shift
of theimage block to match best in the second image. Recently edge-based block matching, instead of
the conventional intensity-based block matching, has been successfully used for computational efficiency
with similar matching performance characteristics [25]. Correlation matching of image areas containing
edges yiclds the displacement vector that has a high confidence of accuracy along the edge direction but
a very low confidence along the perpendicular direction. These different levels of confidence in accuracy
can be incorporated into the correlation matching algorithm by placing diflerent weights, depending
upon their eigen values, along the principal and minor eigen vector axes of the correlation matrix [24].

The details of the algorithm implemented are described here.

1, Construct multi-resolution images from full-resolution imnages (640 pixels x 480 pixels) - 320x240
(/2 scale for both x and y axes), 160x120(1/4 scale), 80x60 (1/8 scale), and 40x30 (1 /16 scale)
images for the graphics model image and aso for the video image. Apply a,) Sobel or b) Canny edge

detector to the graphic. model images of different resolutions and generate binary edge-detected




graphic model images. Apply &) Sobel or b) Canny gradient operator to the video images of

different resolutions and generate gray-scale gradient video images.

2. Start the correlation matching from the I/S-scale resolution images (the |/16-scale images were
not used due to poor correlation results). Form asampling grid with a samnpling interval of 3 pixels
in both column and row axes of the graphic model image for matching. The template image size

is selected to be a 9x9 block.

3. Start the correlation matching from the 1/8-scale images (1/1 6-scale images were not used due
to poor correlation results). Segment the graphic model image into overlapping 9x9 windows as
template images with an inter-window distance of 5 pixels both horizontally and vertically. YFor
each template image that has at least one edge pixel, obtain the 11x1 1 correlation matrix by com-
puting the correlation coeflicients between the templat e image displaced and the corresponding
area in the video image, where the search area window size inthe video image is selected to be
19x1 9, and thus the displacement of the 9x9 template image is up to +5 pixels both horizontally
and vertically. At present, the mean and variance normalized correlation [2], [10] is used as a cor-
relation measure. If the maximum correlation coeflicien t of the correlat ion matrix is greater than
0.5, the template image is considered] to have the best match at the corresponding displacement,

which is represented by image displacement vector.

4. Repeat Steps 2 and 3 in higher resolution images to the full-scale highest resolution level. Usc the
image displacement vector obtained from the immediate lower resolution to specify the location

of the search area for the next higher resolution image.

5. For each template image that has its image displacement vector (with its maximum correlation
coefficient greater than 0.5), obtain the 3-I) position of an object edge point in the temple image
by using the z-buffer (depth) data of the graphic model image. Also compute the corresponding

2-1) image point from the image displacement vector.

6.Tor each template image that has its image displacement vector, compute the major (principal)

and minor eigen vectors of its correlation matrix. ‘I’he eigen vector associated with the maximum



eigen value indicates the direction of the dominant linea r edge in the match area

7. Perform the nonlinear least squares object localization using the 3-1) object points and 2-D image

points. Place lower weights along the principal axes and higher weights along the minor axes.

8. Remove “outliers” to eliminate false matches [7], and thenre-do the non-linear least-squares object

localization of Step 7.

As an initial test, the above multi-resolution correlation-based matching algorithm has been applied
to a calibrated video image used during the performance of the JPL/NASA-GSFC remote servicing
demonstration task. A graphics model of an ORU (Orbital Replacement Unit) and a video image of
the NASA-GSIFC remote site arc shown in Fig. 5a and 5b respectively. The video image contains an
ORU,an Explore spacecraft mockup, and an RRC (Robotics Research Corp.) arm with a servicing
tool mounted at the end of the arm. ‘I’he pose of the ORU graphic model was calibrated originaly
. during the demonstration to match with the video image by using the existing “operator-interactive”
VR calibration technique. in ¥ig. 5a, this calibrated graphic model of” the ORU was intentionally
translated by 2 cm aong all three x, y, andz translational axes and rotated by 3 degrees about all three
X,¥,and 7z rotational axes to test the above correlation-based matching algorithm.

Fig. 6a shows 1 /2, 1 /4, 1/8, and 1 /16 scale graphics model and video images after processing the
images with the Canny edge detector. Correlation results obtained from these images are graphically
shown in IMg.6b. Kach sguare represents the 5x5 center portion of the 9x9 template image for which
the image displacement vector is found, and the line secgmentstarting from the center of the square
represents the displacement vector. Although we can observe several instances of false matches and
missing matches in Fig. 6b, Step 8 of the above algor ithm yielded the desired correct solution for the
ORU object pose in this example tested for both Sobel and Canny operators, llowever, other preliminary
tests with larger orientation errors indicated that the above cor relation-based matching technique using
" edge-detected images is very sensitive to the orientation difference between the initial graphic model
pose and the actual object pose in the video image, and appears to be useful only for a small initial
orientation difference of less than 2 or 3 degrees. For now, this technique appears to be useful only for

the fine alignment/matching of the graphic model to the video image. This technique is of course very
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useful for object tracking with small displacements between two consecutive video image frames.

4.2 Edge-Based Feature Matching

Feature-based matching of a video image of an object to its geometric model has been widely
investigated. In the feature-basul matching, features such as points and edges are used in finding
the best match between the image and model features to determine the object pose (position and
orientation) or the camera viewing parameters.

For m model feat urcs and ¢ image features, the search for the best match in general results in
an exponential search problem since some model feat ures may not h ave corresponding image features
and vice versa due to the occlusion by other objects and the noisy edge detection. To cope with this
exhaustive search problem, sever a researchers [6], [1 1], [1 3] proposed an efficient search strategy, so
called “hypothesize-and-test” strategy, by transforming the exponential search to a polynomial one.
The ‘(hypothesize-ant]-test” strategy is an iterative two-stage search consisting of hypothesis generation
and hypothesis test (verification). In the hypothesis generation stage, a new combination of the minimal
number of model-image feature pairs is selected to determine the geometric transformation between the
object model and its image. The transformation computed is then used inthe hypothesis test stage
to project the object model features onto the image and find compatible or aligned image features.
The model-image alignment is scored by comparing the transformed mnodel features and image features.
The best alignment is the one that maps the most model features onto image features. This two-stage
. procedure is repeated to find a satisfactory match.

Since edges are easier to detect and more reliable than corner points, wc use edges for matching. In
the edge-basecl feature matching, three pairs of model and image edges arc tile minimum number of edge
pairs to estimate the geometric transformation [5], [12]. Thercfore, the search space is now reduced to
find the best triplets of model andimage edge pairs, resulting, in a polynomial search. The edge-based

feature matching algorithm implemented for our semi-automatic VR calibration is as follows:

1 Obtain two separate lists of edge features, one from the graphic model image and the other from
the video image, by detecting edge pixels witha Canny operator, linking neighboring edge pixels,

and breaking the chains into approximating straight line segments. I'he Vista software distribution
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package [1 9], [23], which wc obtained over the computer Internet, provides all these capabilities.

Itsrelated C routines were used in our application.

. Sort each edge list in the order of edge length. Remove short edges, for instance, edges smaller
than 15 pixels. For the graphic model, merge edges that lie on a straight line with a relatively
small broken gap, for instance, less than a 50-pixel gap between the two edges. For the video

image, edges on a straight line arc not merged, but are considered laterin Step 5.

. Make a search list by finding compatible edges for every model edge. The compatibility criteria
used are: 1) orientation difference between the model and image edges less than 20 degrees, and
2) the distance between the model and image edges less than 30 pixels. A simple distance measure
from the image edge to the corresponding model edge is the normal distance from the mid point
of the image edge to the model edge. Use this measure as thedistance between the image and
model edges, if the normal projections of the both endpoints of theimage edge to the model edge
lie inside the model edge segment. If one of the normal projections of the image edge endpoints
lic outside the model edge segment, the distance is increased to take into account this offset and
is defined as the distance between the protruding image edge endpoint and its associated nearby
model image endpoint. If both of the normal projections of the image edge endpoints lie outside
the model edge segment, the larger distance of the two image edge endpoints to their associated
nearby model edge endpoints is defined as the distance hetweenthe iimage and model edges. This
distance computation is based on the fact that normally the image edge will not be longer than

the corresponding model edge correctly projected [9].

. Make a reduced search list from the full search list of Step 3 by imposing further constraints:
1) remove the image edge from the list if the image edge length is greater than 1/4 of or less
than 4 times the model edge length, and 2) keep only the longest edge in the list for image edges
lying on a straight line. once the full and reduced scarchlistsare found, perform the following
iterative hypothesize-and-test procedure to obtain the best match and determine the object pose
(or cancra viewing parameters). The reduced search list is used in the hypothesis generation stage

to significantly reduce the initial search space. The full search list is used during the hypothesis
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test stage.

. Hypothesis generation. Select a triplet of model and image edge pairs in the reduced search list.
Drop the triplet if all three model edges are parallel. Also drop the triplet if two of the model
edges are parallel and very closcl.y located relative to the model size. In selecting a combination
of triplets, NII. or no-match condition must be included to consider occlusions and noisy edge

detections.

. Hypothesis test. I'or a selected triplet, compute the geometric transformation between the object
model and its image. In our approach, we assume that an approximate object POse is (or approx-
imate camera viewing parameters are) known, and a simple non-litear least-squares method is
used to compute the rotation first and then the translation. With the obtained transformation,
project the object model edges onto the image and find the compatible, aligned image edges that
arc closest in distance as defined in Step 3. If the closest aligned image edge has other image edges
on a straight line, these edges are also considered as aligned edges if they arc compatible with the

corresponding model edge. The model-image alignment score is the sum of all the aligned edge

lengths.

. Repecat the above hypothesize-and-test procedure of Steps 4 and 5for the search depth levels
of 3, 4, and 5. The minimum search depth of level 3 considers the three longest model edges,
where each of the model edges has at least one compatible image edge. To enhance the matching
reliability, the search level is expanded to level 5. The best match is the one that produces the

highest alignment score.

The above edge-based feature matching is being tested, and a preliminary result is shown in Figs.

7 and 8.Fig. 7 @) and b) show straight line segments detected after Canny and lLowe operators for

the graphics model of the ORU and the video image, respectively. The initial pose for the graphics

model which was an instance usedin our preliminary test was obtained by translating the calibrated

graphic model by 5 em aong al three x, y, and z translational axes and by rotating the model by -5

degrees about all three x, y, and z rotational axes. }'ig. 8a snows a graphic overlay of the graphic model
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, a this initial pose on the video image, and Fig. 8b shows a graphic overlay of the pose of the ORU
estimated after appying the above edge- based feature matching algorithm. It is significant to note that
the algorithm was able to find a good estimate in this example even though about 50% of the visible
edges of the ORU model is occluded. The algorthim tends to yield good estimates in most cases tested
when the initial pose is within +5 c¢m and 35 degrees from the actual pose, although in some cases
the solution was not the desired one, requiring operator’s supervision. Since the area matching and
feature matching techniques are complementary, a combination of the correlation and feature matching

is anticipated to improve the matching results.

V. Future Work and Potential Applications

I'uture planned work includes 1 ) further tests and enhancements of semi-automated VR calibration
techniques including object tracking, and 2) on-line interactive model building; and modification.

‘I"he results of our joint development efforts will become a key enabling technology in the use and
application of augmented reality, In augmented reality implementations, knowledge of a actua envi-
ronm ent and a virtual world are combined to ease user task execution. We envision wide application of
accurate and calibrated virtual worlds 1o plan and execute complex and dangerous tasks. A flexible and
user friendly calibration technique is requisite for this effort. Ihc VR calibration video overlay option
implemented on TELEGRIP through this collaborative effort will benefit both space and terrestrial
telerobotic applications, providing 1 ) immediate benefits to NASA for giound-controlled telerobotics
servicing in space and 2) immediate benefits to the national DOE (Departinent of Energy) labs working
on the disposal and remediation of nuclear waste.

In addition to the above NASA and DO applications, we see wide applications in execution of
otherwise impractical tasks. For example: 1 ) Casualty Training - the use of a virtual smoke and

. fire models to plan and prepare for casu alt y situations in airplanes, boats, tall buildings, 2) Agile
Manufacturing -- the use of calibrated virtual worlds to direct manufacturing line reconfiguration with
minimal process interruption, 3) Wire Harnesses --- the usc of cabling models to aide operators in the

manufacture of complex wire harnesses, 4) Remote Surgery - wc see this technology as key to alowing
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manu fact ure of com plex wire harnesses, 4) Remote Surgery — wc see thist echnology as key to allowing
remote surgery, transmitted video and accurate computer modecls will allow safe long distance operation,
and 5) Construction - the ability to see where new construction should take place and the ability to

track accuracy of construction should be invaluable.

VI. Conclusion

Within NASA’'s recent thrust for industrial collaboration, JPL and Deneb Robotics, Inc. established
a technology cooperation agreement (TCA) on VR (virtual reality) calibration in September 1993. We
have taken the following approach in our JPI.-Industry cooperative Denchb Commercialization Task: 1 )
+ J 1, transfers the existing VR calibration technology and its evolving new technical additions to Deneb,
2) Deneb, cooperating with J 1'1, inserts this software technology into its commercial product TT.LE-
GRIP asthe VR calibration video overlay option for marketing, and 3) inreturn, NASA utilizes this
enhancement of a commercially supported product for NASA applications, This enhanced commercial
product will greatly benefit both space and terrestrial telerobotics. On-going significantly new technical

additions include semi-automalic VR calibration techniques using model-based image processing.
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Figures :

Fig, 1. An example of a calibrated overlay of both robot arm and ORU graphic

model s on the video image after the virtual reality calibration.

Fig. 2. An exanple of a preview predictive display during the perfornmance of

the ORU extraction in the JPL/GSFC ORU changeout denonstration task.

Fig. 3. TELEGRIP's code and data architecture.

Fig. 4. TELEGRIPS' S Viewi ng nodel .

Fig. 5. a) A graphics mdel of the ORU and b) a video image.

Fig. 6. a) Multi-resolution edge-detected graphic and video images using

the Canny operator, and b) correlation results.

Fig. 7. Detection of straight line segments after Canny and Lowe operators for

a) the graphic mdel and b) video inmage.

Fig. 8. Video overlays a) before and b) after the edge-based feature natching.
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Figure 1: An example of a calibrated overlay «f Figure 3 TELEGRIF’s code and data architec-

both robot arm and ORU graphic models on theure. TGRIP Main contains initialization code

video image after the virtual reality calibration only. All other TELEG RIP functions are cent ained
in libtgrip .so.
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Figure 2: An example of a preview/predictive dis-
play during the performance of the ORU extraction » ,
in the JPL/GSFC ORU changeout demonstration Figure 4. TELEGRIP’s viewing model

task.
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